Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 10(5)2022 May 23.
Article in English | MEDLINE | ID: mdl-35632584

ABSTRACT

Hypersensitivity to a contact allergen is one of the most abundant forms of inflammatory skin disease. Today, more than 20% of the general population are sensitized to one or more contact allergens, making this disease an important healthcare issue, as re-exposure to the allergen can initiate the clinical disease termed allergic contact dermatitis (ACD). The current standard treatment using corticosteroids is effective, but it has side effects when used for longer periods. Therefore, there is a need for new alternative therapies for severe ACD. In this study, we used the versatile Tag/Catcher AP205 capsid virus-like particle (cVLP) vaccine platform to develop an IL-1ß-targeted vaccine and to assess the immunogenicity and in vivo efficacy of the vaccine in a translational mouse model of ACD. We show that vaccination with cVLPs displaying full-length murine IL-1ß elicits high titers of neutralizing antibodies, leading to a significant reduction in local IL-1ß levels as well as clinical symptoms induced by treatment with 1-Fluoro-2,4-dinitrobenzene (DNFB). Moreover, we show that a single amino acid mutation in muIL-1ß reduces the biological activity while maintaining the ability to induce neutralizing antibodies. Collectively, the data suggest that a cVLP-based vaccine displaying full-length IL-1ß represents a promising vaccine candidate for use as an alternative treatment modality against severe ACD.

2.
mBio ; 12(5): e0181321, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634927

ABSTRACT

Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 µg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19. IMPORTANCE Vaccination is essential to reduce disease severity and limit the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Protein-based vaccines are useful to vaccinate the world population and to boost immunity against emerging variants. Their safety profiles, production costs, and vaccine storage temperatures are advantageous compared to mRNA and adenovirus vector vaccines. Here, we use the versatile and scalable baculovirus expression vector system to generate a two-component nanoparticle vaccine to induce potent neutralizing antibody responses against SARS-CoV-2 variants. These nanoparticle vaccines can be quickly adapted as boosters by simply updating the antigen component.


Subject(s)
Antibodies, Neutralizing/metabolism , Nanoparticles/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/immunology , Female , Glycosylation , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Sf9 Cells , Viral Vaccines/immunology
3.
Nat Commun ; 12(1): 324, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436573

ABSTRACT

The rapid development of a SARS-CoV-2 vaccine is a global priority. Here, we develop two capsid-like particle (CLP)-based vaccines displaying the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. RBD antigens are displayed on AP205 CLPs through a split-protein Tag/Catcher, ensuring unidirectional and high-density display of RBD. Both soluble recombinant RBD and RBD displayed on CLPs bind the ACE2 receptor with nanomolar affinity. Mice are vaccinated with soluble RBD or CLP-displayed RBD, formulated in Squalene-Water-Emulsion. The RBD-CLP vaccines induce higher levels of serum anti-spike antibodies than the soluble RBD vaccines. Remarkably, one injection with our lead RBD-CLP vaccine in mice elicits virus neutralization antibody titers comparable to those found in patients that had recovered from COVID-19. Following booster vaccinations, the virus neutralization titers exceed those measured after natural infection, at serum dilutions above 1:10,000. Thus, the RBD-CLP vaccine is a highly promising candidate for preventing COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , Capsid/immunology , Protein Binding/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/immunology , COVID-19/prevention & control , Female , Humans , Immunogenicity, Vaccine , Kinetics , Mice , Mice, Inbred BALB C , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Serologic Tests , Spike Glycoprotein, Coronavirus/immunology
4.
Oncoimmunology ; 7(3): e1408749, 2018.
Article in English | MEDLINE | ID: mdl-29399414

ABSTRACT

Overexpression of human epidermal growth factor receptor-2 (HER2) occurs in 20-30% of invasive breast cancers. Monoclonal antibody therapy is effective in treating HER2-driven mammary carcinomas, but its utility is limited by high costs, side effects and development of resistance. Active vaccination may represent a safer, more effective and cheaper alternative, although the induction of strong and durable autoantibody responses is hampered by immune-tolerogenic mechanisms. Using a novel virus-like particle (VLP) based vaccine platform we show that directional, high-density display of human HER2 on the surface of VLPs, allows induction of therapeutically potent anti-HER2 autoantibody responses. Prophylactic vaccination reduced spontaneous development of mammary carcinomas by 50%-100% in human HER2 transgenic mice and inhibited the growth of HER2-positive tumors implanted in wild-type mice. The HER2-VLP vaccine shows promise as a new cost-effective modality for prevention and treatment of HER2-positive cancer. The VLP platform may represent an effective tool for development of vaccines against other non-communicable diseases.

5.
Vaccine ; 35(27): 3474-3481, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28527688

ABSTRACT

BACKGROUND: The antigen VAR2CSA plays a pivotal role in the pathophysiology of pregnancy-associated malaria (PAM) caused by Plasmodium falciparum. A VAR2CSA-based vaccine candidate, PAMVAC, is under development by an EU-funded multi-country consortium (PlacMalVac project). As part of PAMVAC's clinical development, we quantified naturally acquired vaccine antigen-specific memory B and T cell responses in Beninese primigravidae recruited at the beginning of pregnancy and followed up to delivery and beyond. METHODS: Clinical and parasitological histories were compiled from monthly clinic visits. On 4 occasions (first and fifth month of pregnancy, delivery, 6months post-delivery) peripheral blood mononuclear cells were isolated for in vitro assays. PAMVAC-specific memory B cells as well as those specific for a PAM unrelated P. falciparum antigen (PfEMP1-CIDR1a) and for tetanus toxoid were quantified by ELISpot. Memory T cell responses were assessed by quantifying cytokines (IL-5, IL-6, IL-10, IL-13, IFN-γ, TNF-α) in supernatants of cells stimulated in vitro either with PAMVAC, or mitogen (PHA). RESULTS: Both tetanus toxoid- and PAMVAC-specific memory B cell frequencies increased to reach peak levels in the 5th month and at delivery, respectively and persisted post-delivery. The frequency of CIDR1a-specific memory B cells was stable during pregnancy, but declined post-delivery. The cumulated prevalence of infection with P. falciparum during pregnancy was 61% by microscopy. In women with a history of such infections, a significantly higher frequency of PAMVAC-specific memory B cells was observed at delivery. PAMVAC-specific pro-inflammatory (IFN-γ, TNF) responses tended to be higher at delivery in those with a history of infection. Mitogen-induced IL-5/IL-13 responses were significantly enhanced in the same women. CONCLUSIONS: PAMVAC-specific memory B cells are induced during first pregnancies and are maintained post-delivery. Women with a T helper cell profile biased towards production of Th2-type cytokines have a greater risk of infection with P. falciparum.


Subject(s)
Antigens, Protozoan/immunology , B-Lymphocytes/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Placenta Diseases/prevention & control , Pregnancy Complications, Infectious/prevention & control , T-Lymphocytes/immunology , Adolescent , Adult , Benin , Cytokines/metabolism , Enzyme-Linked Immunospot Assay , Female , Humans , Infant, Newborn , Pregnancy , Young Adult
6.
J Nanobiotechnology ; 14: 30, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-27117585

ABSTRACT

BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches for VLP-based antigen display require labor-intensive trial-and-error optimization, and often fail to generate dense antigen display. Here we utilize the split-intein (SpyTag/SpyCatcher) conjugation system to generate stable isopeptide bound antigen-VLP complexes by simply mixing of the antigen and VLP components. RESULTS: Genetic fusion of SpyTag or SpyCatcher to the N-terminus and/or C-terminus of the Acinetobacter phage AP205 capsid protein resulted in formation of stable, nonaggregated VLPs expressing one SpyCatcher, one SpyTag or two SpyTags per capsid protein. Mixing of spy-VLPs with eleven different vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5). CONCLUSIONS: The spy-VLP system constitutes a versatile and rapid method to develop highly immunogenic VLP-based vaccines. Our data provide proof-of-concept for the technology's ability to present complex vaccine antigens to the immune system and elicit robust functional antibody responses as well as to efficiently break B cell self-tolerance. The spy-VLP-system may serve as a generic tool for the cost-effective development of effective VLP-vaccines against both infectious- and non-communicable diseases and could facilitate rapid and unbiased screening of vaccine candidate antigens.


Subject(s)
Vaccines, Virus-Like Particle/immunology , Acinetobacter/immunology , Animals , Antigens, Bacterial/immunology , B-Lymphocytes/immunology , Bacteriophages/immunology , Capsid Proteins/immunology , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Vaccination/methods
7.
Appl Microbiol Biotechnol ; 84(1): 157-67, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19444441

ABSTRACT

The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic pathways that are not directly involved in acetate metabolism are influenced by acuB deletion. Clear differences in organic acid consumption and production were detected between the acuB and reference strain. However, the hypothesis that AcuB is responsible for basal AcuA activity necessary for activation of acetate metabolic pathways, even during growth on glucose, could not be confirmed. The experiments demonstrated that also when acuB was deleted, no acetate was formed. Therefore, AcuB cannot be the only activator of AcuA, and another control mechanism has to be available for activating AcuA.


Subject(s)
Aspergillus nidulans/physiology , Fungal Proteins/genetics , Gene Deletion , Acetates/metabolism , Aspergillus nidulans/genetics , Aspergillus nidulans/growth & development , Fungal Proteins/metabolism , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...